

Accessories:

P181 Breakout Module
P182 Additional Stepper Axis
P183 Additional Servo Axis
P184 4 Axis DAC Module
P185 8 Axis DAC Module
P187 100 Way Cable 2.5m
P315 CAN 16-I/O
P325 CAN 8 Analogue Inputs

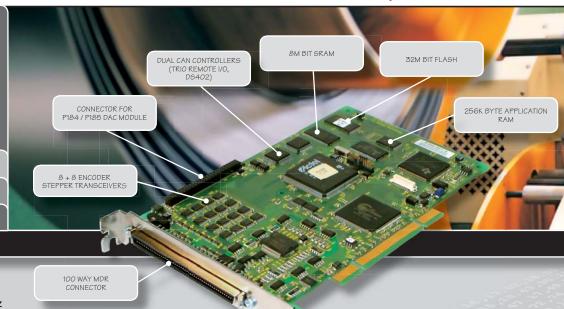
MOTION COORDINATOR

PCI BUS

PRODUCT CODE: P180

PCI 208

The PCI 208 is based on a 120Mhz 32-bit floating point Digital Signal Processor. High speed communication over the PCI bus is provided by a 128k bit dual port RAM. A large FPGA provides up to 8 stepper axes, or 8 axes with encoder feedback, or mixtures of the two. For servo drives two optional DAC mezzanine boards provide 16 bit resolution +/-10V outputs. A DIN rail mounting break-out board eases the wiring interconnections for low-volume applications.


The PCI 208 is designed for motion control applications centred around a PC. Application programs written on the PC can access its facilities easily using an ActiveX component. It is also possible to run application programs on the PCI 208 in Trio's multi-tasking BASIC language or to use both programming techniques. Trio's Motion Perfect application development software can be used to monitor the execution of programs, I/O and motion. Complex motion such as cams, gears, linked axes, and interpolation is made easy with Trio's comprehensive BASIC command set. The PCI 208 has 20 opto-isolated digital 24V inputs and 10 opto-isolated outputs. The inputs can be used as highspeed hardware registration inputs where accurate product placement in applications such as printing and packaging is required.

The I/O count can be expanded using Trio's remote I/O system with both digital and analogue modules. The PCI 208 has 2 built-in CAN channels for I/O and axis control.

The base PCI 208 has 2 stepper axes and the axis count can be increased in single axis steps up to 8. A P184 or P185 DAC board is required for analogue output servo operation.

I/O Capability

- 20 inputs and 10 output channels
- Expandable to 256 bi-directional channels and 32 analogue inputs.

Feature Enable Codes

The PCI 208 is supplied as standard with axis 0 and axis 1 enabled (servo or stepper). Software "Feature Enable Codes" can be purchased and then entered using *Motion* Perfect to enable axes 2 to 7 for either servo, stepper, CAN* or encoder operation. If you purchase servo codes, you will require either the 4 or 8 analogue output mezzanine option board.

*CAN FEC's: P701, P702, P704

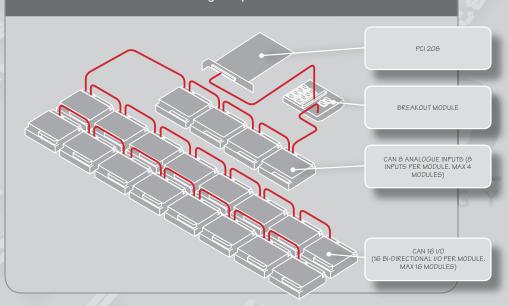
Optional DAC Modules

P184

4 Analogue out 4 Analogue in 8 Analogue out

Axis Configuration

Axis 0 stepper / servo / encoder / CAN Axis 1 stepper / servo / encoder / CAN stepper / servo / encoder / CAN Axis 2 Axis 3 stepper / servo / encoder / CAN Axis 4 stepper / servo / encoder / CAN stepper / servo / encoder / CAN Axis 5 Axis 6 stepper / servo / encoder / CAN stepper / servo / encoder / CAN Axis 7


Any unused axis can be used as a virtual axis

Fieldbus Communication Options

AN Trio remote I/O, DeviceNet slave CANopen I/O, or user

programmable

Example of an 8 Axis Servo System with 256 expansion I/O and 32 analogue inputs

Part Number P180

Size 106mm x 180mm x 21mm

Weight

Temperature Range 0-45 degrees Celsius

Power Consumption 3.3V or 5V Supplied Via PCI Bus

Maximum Number Of Axes

Built In Encoder Inputs 8 bi-directional line driver encoder

input/stepper output RS422P

Built In Stepper 8 @ 6MHz (Encoder) or 2MHz (Stepper) **Built in Analogue Outputs**

None - Use 4 or 8 Axis Option Board (P184 OR P185)

Servo Cycle Time 1000us, 500us, or 250us **Built In Inputs** 20 x 24V Opto-Isolated **Built In Outputs** 10 x 24V Opto-Isolated

Built In Bi-directional I/O None

Built in Analogue Inputs None. Use P184-to provide 4 @ +/-10V,

12 bit

Forward Limit / Reverse Limit / Datum / Inputs Functions

1 Solid State - 24V @ 100mA max Watchdog Relay

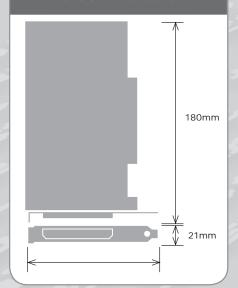
Current

Serial Ports None

2 @ 1MBAUD max **CAN Ports**

Daughter board Slots None **User Memory** 256kbytes 32000 values Table Memory

Multi-tasking 2 Fast Tasks + 5 Normal Tasks


BS EN61000-6-2 : 1999 generic noise immunity standard for industrial **EMC Compliance**

environment

BS EN61000-6-4: 2001 generic emission standard for light industrial

environment

Overall Dimensions

PCI 208 BREAKOUT MODULE (PI8I)

Din rail mounted module to convert PCI 208 100 way High Density connector to 8 x 9 pin sub D style encoder connectors and screw terminal disconnects for I/O and analogue outputs. Requires P187 connecting cable.

PCI 208 4 AXIS DAC MODULE (PI84)

Provides 4 +/-10V, 16 Bit outputs for the P180 (PCI 208). Includes 4 x 0-10V analogue inputs 12 Bit.

PCI 208 8 AXIS DAC MODULE (PI84)

Provides 8 +/-10V 12 Bit outputs for the P180 (PCI 208).

PCI 100WAY CABLE 2.5M (P187)

100 way to 100 way High Density cable for connecting PCI 208 to PCI 208 Breakout Module.

